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Clusters of galaxies

• Largest bound virialised systems ~1014-1015Msun

• Velocity dispersion σv~1000 km/s (~0.003c)

• Centres - often defined by the brightest galaxy (BCG)

• Usually very close to peak of light, X-rays, DM

• σBCG ~ 0.4-0.5 σv so much “colder” than general popn



Clusters in the Millenium Simulation (Y. Cai)
Gravitational redshift & uRSD 5

Figure 1. Top row: particle distributions within 10 Mpc/h radius from the main halo centre projected along one major axises of the simulation box. n in
the label of the colour bars is the number of dark matter particles in each pixel. Middle row: the same zones but showing the potential values of all particles.
Sub-haloes and neighbouring structures induce local potential minima. Bottom row: the gravitational redshift profiles with respect to the cluster centres. The
dashed lines shows the spherical averaged profile, Φiso, which is the same as equal-directional weighting from the halo centres. Sub-haloes and neighbours
cause the mass weighted profiles Φobs to be biased low compared to the spherical averaging. This is similar to observations where the observed profiles are
weighted by galaxies.
c⃝ 0000 RAS, MNRAS 000, 000–000



Wojtak, Hansen & Hjorth (Nature 2011)

• Wojtek, Hansen & Hjorth stacked 7,800 
galaxy clusters from SDSS DR7 in 
redshift space

• centres defined by the brightest 
cluster galaxies (BCGs)

• approx 10 redshifts per cluster

• They found a net offset (blue-shift) 
corresponding to v = -10 km/s

• c.f. ~600km/s l.o.s velocity dispersion

• Interpreted as gravitational redshift effect

• right order of magnitude, sign

• “Confirms GR, rules out TeVeS”

• Had been discussed before (Cappi 1995; 
Broadhurst+Scannapiaco, ....)
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 2 Constraints on gravitational redshift in galaxy clusters. The effect manifests itself as a
blueshift ∆ of the velocity distributions of cluster galaxies in the rest frame of their BCGs. Velocity
shifts were estimated as the mean velocity of a quasi-Gaussian component of the observed velocity
distributions (see Fig. 1). The error bars represent the range of ∆ parameter containing 68 per cent
of the marginal probability and the dispersion of the projected radii in a given bin. The blueshift
(black points) varies with the projected radius R and its value at large radii indicates the mean
gravitational potential depth in galaxy clusters. The red profile represents theoretical predictions of
general relativity calculated on the basis of the mean cluster gravitational potential inferred from
fitting the velocity dispersion profile under the assumption of the most reliable anisotropic model
of galaxy orbits (see SI for more details). Its width shows the range of ∆ containing 68 per cent
of the marginal probability. The blue solid and dashed lines show the profiles corresponding to two
modifications of standard gravity: f(R) theory4 and the tensor-vector-scalar (TeVeS) model5, 6.
Both profiles were calculated on the basis of the corresponding modified gravitational potentials
(see SI for more details). The prediction for f(R) represents the case which maximises the deviation
from the gravitational acceleration in standard gravity on the scales of galaxy clusters. Assuming
isotropic orbits in fitting the velocity dispersion profile lowers the mean gravitational depth of the
clusters by 20 per cent. The resulting profiles of gravitational redshift for general relativity and
f(R) theory are still consistent with the data and the discrepancy between prediction of TeVeS
and the measurements remains nearly the same. The arrows show characteristic scales related to
the mean radius rv of the virialized parts of the clusters.
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SDSS Redshift Survey
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Supplementary Figure 1 Velocity diagram combined from kinematic data of 7800 galaxy clusters
detected in the SDSS11 Data Release 7. Velocities vlos of galaxies with respect to the brightest
cluster galaxies are plotted as a function of the projected cluster-centric distance R. Blue lines are
the iso-density contours equally spaced in the logarithm of galaxy density in the vlos − R plane.
The arrows show characteristic scales related to the mean virial radius estimated in dynamical
analysis of the velocity dispersion profile. Data points represent 20 per cent of the total sample.
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The physics of cluster gravitational redshifts

• Einstein gravity

• gravitational "time dilation"

• Weak field limit

• δν/ν = -Φ/c2

• Measured by Pound & Rebka

Is that it?

cluster



Is there any more to the physics of cluster grav-z?

• Is Pound & Rebka 
relevant?

• equipment lashed to 
tower in Harvard phys. 
dept

• where is the tower 
here?

• What about the 
principle of equivalence?

• where is the rocket?

• where is the earth?



The nature of astronomical redshifts
• Homogeneous cosmological models:

• Wavelength scales as a(t), or δλ/λ = δD/D, but why?

• Symmetry → standing wave solutions with λ ~ a(t)
• Analogy with expanding cavity

• lots of little redshifts as ‘photons’ bounce off walls

• Maxwell’s equations written in “expanding” coordinates

• extra cosmic ‘damping’ or ‘friction’ term in EOM

• So expansion of space stretches wavelengths?





Misner, Thorne and 
Wheeler

redshift as an 
effect on standing 

waves....

But is this a standing 
wave? 



Expanding space and redshifts in textbooks.....
• E.R. Harrison (2000)

• Wolfgang Rindler (1970)

5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

a

FIG. 2: The scale factor of a hypothetical “loitering” universe as a function of time (measured in units of the present time). At
the time indicated by the dot, a galaxy emits radiation, which is observed at the present time. At the times of both emission
and observation, the expansion is very slow, yet the galaxy’s observed redshift is large.

Let us begin by reviewing a standard derivation8,13 of the cosmological redshift. Consider a photon that travels
from a galaxy to a distant observer, both of whom are at rest in comoving coordinates. Imagine a family of comoving
observers along the photon’s path, each of whom measures the photon’s frequency as it goes by. We assume that
each observer is close enough to his neighbor so that we can accommodate them both in one inertial reference frame
and use special relativity to calculate the change in frequency from one observer to the next. If adjacent observers
are separated by the small distance δr, then their relative speed in this frame is δv = Hδr, where H is the Hubble
parameter. This speed is much less than c, so the frequency shift is given by the nonrelativistic Doppler formula

δν/ν = −δv/c = −Hδr/c = −Hδt. (4)

We know that H = ȧ/a where a is the scale factor. We conclude that the frequency change is given by δν/ν = −δa/a;
that is, the frequency decreases in inverse proportion to the scale factor. The overall redshift is therefore given by

1 + z ≡
ν(te)

ν(to)
=

a(to)

a(te)
, (5)

where te and to refer to the times of emission and observation, respectively.
In this derivation we interpret the redshift as the accumulated effect of many small Doppler shifts along the photon’s

path. We now address the question of whether it makes sense to interpret the redshift as one big Doppler shift, rather
than the sum of many small ones.

Figure 2 shows a common argument against such an interpretation. Imagine a universe whose expansion rate varies
with time as shown in Fig. 2. A galaxy emits radiation at the time te indicated by the dot, and the radiation reaches
an observer at the present time t0. The observed redshift is z = a(t0)/a(te)−1 = 1.5, which by the special-relativistic
Doppler formula would correspond to a speed of 0.72c. At the times of emission and absorption of the radiation, the
expansion rate is very slow, and the speed ȧr of the galaxy is therefore much less than this value. We can construct
models in which both ȧ(te) and ȧ(t0) are arbitrarily small without changing the ratio a(t0)/a(te) and hence without
changing the redshift.

Upon closer examination this argument is unconvincing, because the calculated velocities are not the correct veloc-
ities. We should not calculate velocities at a fixed instant of cosmic time (either t = te or t = t0). Instead we should
calculate the velocity of the galaxy at the time of light emission relative to the observer at the present time. After all,
if a distant galaxy’s redshift is measured today, we wouldn’t expect the result to depend on what the galaxy is doing
today, nor on what the observer was doing long before the age of the dinosaurs.

In fact, when astrophysicists talk about what a distant object is doing “now,” they often do not mean at the present
value of the cosmic time, but rather at the time the object crossed our past light cone. For instance, when astronomers
measure the orbital speeds of planets orbiting other stars, the measured velocities are always of this sort. There is an
excellent reason for this convention: we never have information about what a distant object is doing (or if the object
even exists) at the present cosmic time. Any statement in which “now” is used to refer to the present cosmic time at
the location of a distant object is not about anything observable, because it refers to events far outside our light cone.

In summary, if we wish to discuss the redshift of a distant galaxy as a Doppler shift, we need to be willing to talk
about vrel, the velocity of the galaxy then relative to us now. Talking about vrel is precisely the sort of thing that







Mathematics of radiation in expanding space
• In non-expanding space, extremizing the action

• S = ∫dt d3x L(∂tφ,∇xφ)

• with e.g. L = ((∂tφ)2 - (∇xφ)2)/2   (i.e. massless scalar)
• Gives the wave equation with propagation speed c (unity here)

• ∂t2φ - ∇x2φ = 0

• In expanding universe, physical coordinate x = a(t) r, where r is 
‘comoving’ coordinate, so

• δS = δ∫dt d3r L’(∂tφ,∇rφ) = 0

• with L’ = a(t)3 L (and ∇rφ = a(t) ∇xφ)

• Gives ∂t2φ + 3 H ∂tφ - a-2∇r2φ = 0

• expansion gives extra ‘damping’, or ‘friction’, term 3 H ∂tφ 
involving the expansion rate H = (da/dt)/a.

• energy not conserved (Lagrangian formally time dependent)

• admits damped standing wave (in r) solutions (∂tφ)2 ~ a-4

• And this does give the right answer for photons between FOs



But see also Weinberg, 1st 3 Minutes, 
p31: “One can think of the wave crests 
being pulled farther and farther apart by 
the expansion of the universe.”
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Abstract: While it remains the staple of virtually all cosmological teaching, the concept of expanding
space in explaining the increasing separation of galaxies has recently come under fire as a dangerous
idea whose application leads to the development of confusion and the establishment of misconceptions.
In this paper, we develop a notion of expanding space that is completely valid as a framework for the
description of the evolution of the universe and whose application allows an intuitive understanding
of the influence of universal expansion. We also demonstrate how arguments against the concept in
general have failed thus far, as they imbue expanding space with physical properties not consistent
with the expectations of general relativity.
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1 Introduction

When the mathematical picture of cosmology is first
introduced to students in senior undergraduate or ju-
nior postgraduate courses, a key concept to be grasped
is the relation between the observation of the redshift
of galaxies and the general relativistic picture of the ex-
pansion of the Universe. When presenting these new
ideas, lecturers and textbooks often resort to analo-
gies of stretching rubber sheets or cooking raisin bread
to allow students to visualise how galaxies are moved
apart, and waves of light are stretched by the “expan-
sion of space”. These kinds of analogies are appar-
ently thought to be useful in giving students a men-
tal picture of cosmology, before they have the ability
to directly comprehend the implications of the formal
general relativistic description. However, the academic
argument surrounding the expansion of space is not as
clear as standard explanations suggest; an interested
student and reader of New Scientist may have seen
Martin Rees & Steven Weinberg (1993) state

...how is it possible for space, which is ut-
terly empty, to expand? How can noth-
ing expand? The answer is: space does
not expand. Cosmologists sometimes talk
about expanding space, but they should
know better.

while being told by Harrison (2000) that

expansion redshifts are produced by the
expansion of space between bodies that
are stationary in space

What is a lay-person or proto-cosmologist to make of
this apparently contradictory situation?

Whether or not attempting to describe the obser-
vations of the cosmos in terms of expanding space is a
useful goal, regardless of the devices used to do so,

is far from uncontroversial. Recent attacks on the
physical concept of expanding space have centred on
the motion of test particles in the expanding universe;
Whiting (2004), Peacock (2006) and others claim that
expanding space fails to adequately explain the motion
of test particles and hence that it should be abandoned.
But what, exactly, is at fault? Crucially, these claims
rely on falsifying predictions made from using expand-
ing space as a tool to guide intuition, to bypass the full
mathematical calculation. However, the very meaning
of the phrase expanding space is not rigorously defined,
despite its widespread use in teaching and textbooks.
Hence, it is prudent to be wary of predictions based
on such a poorly defined intuitive frameworks.

In recent work, Barnes et al. (2006) solved the test
particle motion problem for universes with arbitrary
asymptotic equation of state w and found agreement
between the general relativistic solution and the ex-
pected behaviour of particles in expanding space. We
suggest that the apparent conflict between this work
and others, for instance Chodorowski (2006b), lies pre-
dominantly in differing meanings of the very concept of
expanding space. This is unsurprising, given that it is
a phrase and concept often stated but seldom defined
with any rigour.

In this paper, we examine the picture of expand-
ing space within the framework of fully general rela-
tivistic cosmologies and develop it into a precise def-
inition for understanding the dynamical properties of
Friedman-Robertson-Walker (FRW) spacetimes. This
framework is pedagogically superior to ostensibly sim-
pler misleading formulations of expanding space — or
more general schemes to picture the expansion of the
Universe — such as kinematic models and approxi-
mations to special relativity or Newtonian mechanics,
since it is both clearer and easier to understand as well
as being a more accurate approximation. In particu-
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dominantly in differing meanings of the very concept of
expanding space. This is unsurprising, given that it is
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Arguments against “expanding space” 
• Space-time is locally flat (a.k.a. ‘Minkowskian’)

• Whiting, 2004; Peacock, 2009; Bunn & Hogg 2009, 
Chodorowski, 2007, 2011, Rees & Weinberg....

• Writing ∂t2φ - ∇x2φ = 0 in re-scaled coordinates does not 
change the local physics.

• despite apparent damping term

• Example: the Milne model

• Limiting case of Ω →0 FRW model

• Different families of FOs → different a(t)

• → Red-shifting or blue-shifting fireball solutions

• multiple families of uniformly expanding (or contracting) 
observers and radiation fields - even in same region of space

• The expansion rate H is defined by the radiation itself!

• Determined by the initial conditions.



Observers and photon paths in the Milne Model

A 3-surface of constant 
proper time since the 

explosion

Geometry of these 3-
surfaces is hyperbolic

Same as open FRW models

Minkowski spacetime



Standing waves (in expanding coords) in Milne’s model



Peebles (’71) explanation of cosmological redshift
• The redshift λrec/λem is the product of 

a lot of small shifts between a set of 
FOs along the look-back path

• In the vicinity of a neighouring pair of 
FOs

• space-time is locally flat, so

• incremental redshifts are Doppler 
shifts

• Yields differential equation

• dλ/λ = da/a with solution λ ∝ a(t)

• So fractional change in proper 
separation is the same as the 
fractional change in λ

• i.e. δlog(λ/D) = 0



What about our lumpy universe?

• Bondi (1947): Spherical models:

• for low-Z, redshift is product of 
Doppler and gravitational 
redshift

• also in homogeneous case

• But Synge (1960) shows that all 
redshifts are given by Doppler 
formula

• “In attributing a cause to this 
spectral shift, one would say .... 
that the spectral shift was 
caused by the relative velocity 
of the source and the 
observer''.



Synge, 1960; General Relativity

• Observed (or emitted) energy  
is dot product of observer 4-
velocity and the photon 4-
momentum.

• → wavelength shift is given by 
Doppler’s formula with 
“relative velocity” being the 
l.o.s. component of the 
difference of the receiver 4-
velocity and a parallel 
transported version of the 
emitter 4-velocity

• “Not a gravitational redshift as 
the Riemann tensor does not 
appear in formula”

• But parallel transport does 
know about gravity



Bunn & Hogg, 2009

• Like Peebles they break photon path into a set of 
intervals

• set of intervening observers along line of sight

• local flatness →product of Doppler shifts

• Intervening observers need not be freely falling

• Any incremental shift can be considered to be either 
Doppler or gravitational

• gravitational redshifts are just Doppler shifts viewed 
from an unnatural coordinate system - so an 
enlightened cosmologist would never try to draw any 
distinction

• All redshifts can (and should!) be considered to be 
Doppler, or ‘kinematic’ in nature.  (much like Synge)

• Does this mean Δln(λ/D) = 0 is universal?



ideas about redshifts in astronomy - summary

• The redshift of light in cosmology

• redshift is caused by the expansion of space?

• standing waves in a cavity

• Maxwell's equations in expanding space: "Hubble damping"

• counter arguments (e.g. "how can space expand?")

• Peebles' picture - lots of little Doppler shifts

• The redshift of light in general

• Bondi ('47): combination of gravity & Doppler

• Synge ('60) redshifts "caused by the relative velocity..."

• Bunn & Hogg ('09): "gravitational redshifts are just Doppler 
shifts viewed from an unnatural coordinate system"



Interpretation of redshifts: why do we care?

• The equivalence principle:

• locally gravity does not exist

• "transformed away" for freely falling observers

• special relativity rules

• Lesson from cosmology:

• wavelength is tied to the expansion of space

• we don't seem to see the effect of gravity

• redshift appears to be purely kinematic

• The "kinematic picture" may suggest this is general

• But clusters are not expanding

• why would we see any gravitational redshift?

• is Einstein/Newton/Pound+Rebka complete?



Back to the Wojtak et al. measurement

• Gravitational redshift for light 
climbing out of potential wells 
of clusters of galaxies

• Long predicted by theorists 

• perhaps a bit oversimplified

• Now finally measured 

• at ~2.5 sigma level

• Claimed to conflict with TeVeS 
modified gravity

• descendent of Milgrom 
theory

• But OK with GR or e.g. f(R) 
modifications
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Figure 2 Constraints on gravitational redshift in galaxy clusters. The effect manifests itself as a
blueshift ∆ of the velocity distributions of cluster galaxies in the rest frame of their BCGs. Velocity
shifts were estimated as the mean velocity of a quasi-Gaussian component of the observed velocity
distributions (see Fig. 1). The error bars represent the range of ∆ parameter containing 68 per cent
of the marginal probability and the dispersion of the projected radii in a given bin. The blueshift
(black points) varies with the projected radius R and its value at large radii indicates the mean
gravitational potential depth in galaxy clusters. The red profile represents theoretical predictions of
general relativity calculated on the basis of the mean cluster gravitational potential inferred from
fitting the velocity dispersion profile under the assumption of the most reliable anisotropic model
of galaxy orbits (see SI for more details). Its width shows the range of ∆ containing 68 per cent
of the marginal probability. The blue solid and dashed lines show the profiles corresponding to two
modifications of standard gravity: f(R) theory4 and the tensor-vector-scalar (TeVeS) model5, 6.
Both profiles were calculated on the basis of the corresponding modified gravitational potentials
(see SI for more details). The prediction for f(R) represents the case which maximises the deviation
from the gravitational acceleration in standard gravity on the scales of galaxy clusters. Assuming
isotropic orbits in fitting the velocity dispersion profile lowers the mean gravitational depth of the
clusters by 20 per cent. The resulting profiles of gravitational redshift for general relativity and
f(R) theory are still consistent with the data and the discrepancy between prediction of TeVeS
and the measurements remains nearly the same. The arrows show characteristic scales related to
the mean radius rv of the virialized parts of the clusters.
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 6. GMBCG (top), WHL12 (middle) and redMaPPer (bottom) phase-space diagrams before (left) and after (right) removing statistically the foreground
and background contribution of galaxies. Black contours represent iso-density regions. The asymmetry between the positive and negative vlos region can
be particularly clearly seen in the redMaPPer case. This difference disappears after the statistical interloper removal. We also plot as red dashed lines the
boundaries at 1, 2.5 and 4.5 Mpc that will determine the radial bins we will use in Section 3. In these diagrams, the position of the BCG is fixed at r⊥ = 0 Mpc
and vlos = 0 km s−1 by definition, and the density is determined by the number of galaxies with spectroscopic redshift measurements around them.

Also, this will help us identify which of the BCGs have the best
spectroscopic measurements, so, taking a conservative approach,
we will only work with those BCGs identified in our ‘high quality’
SDSS galaxy sample, discarding this way BCG redshift measure-
ments obtained from ‘bad’ plates. This leaves us with a total sample
of 19 867 BCGs in the GMBCG catalogue, 52 255 in the WHL12
case, and 10 197 in the redMaPPer one. We compute the pro-
jected transverse distance r⊥ and the line-of-sight velocity vlos =
c (zgal − zBCG)/(1 + zBCG) of all SDSS galaxies with respect to the
BCGs, and keep those that lie within a separation of r⊥ < 7 Mpc
and |vlos| < 6000 km s−1 from these. It should be noted that, as
we are working mainly in a low redshift region, the impact of the
cosmological parameters used is not significant. Stacking all the ob-
tained pairs into one single phase-space diagram, we get the density
distributions shown on the left-hand side of Fig. 6.

To remove the contribution of foreground and background galax-
ies not gravitationally bound to clusters, we adopt an indirect ap-

proximation, where galaxies not belonging to clusters are not iden-
tified individually in each cluster, as in the direct method, but taken
into account statistically once all the cluster information has been
stacked into one single distribution of galaxies. See Wojtak et al.
(2007) for a detailed study of different direct and indirect foreground
and background galaxies removal techniques.

In our case, we apply the following procedure: first,
we bin the whole phase-space distribution in bins of size
0.04 Mpc × 50 km s−1. After that, we take all those bins lying in two
stripes 4500 km s−1 < |vlos| < 6000 km s−1, where we assume that
all the galaxies there belong either to the pure foreground or to the
pure background sample. Then, we fit a quadratic polynomial de-
pendent of both vlos and r⊥ to the points in both stripes, and use the
interpolated background model to correct the ‘inner’ phase-space
region bins. We use a function that depends not only on r⊥, but also
on vlos; this is because at high redshifts, and due to observational
selection, we may have more spectroscopic measurements of those
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FIG. 1. (a): Dependence of the number of galaxies, ngal, of the number of associated clusters, nclst, and of the ratio, ngal/nclst,
on the separation between BCGs and associated galaxies, rgc. Bins of rgc are defined by a sliding window with a width of
0.5r200, where each data-point is placed in the center-position of the corresponding bin.
(b): Dependence of the signal of the GRS, ∆vgc, on rgc, where the width of the sliding window is denoted by wsw. The shaded
areas around the two nominal results (circles and squares) correspond to the variations in the signal due to the systematic tests
described in the text, combined with the uncertainty on the model-fit. On average, ∆vgc = −11+7

−5 km/s for 1 < rgc/r200 < 2.5.
The third dataset (triangles) includes configurations in which SDSS and BOSS redshifts are mixed together. The bold lines
represent the GR predictions of Kaiser [11], with and without his added kinematic effects, as indicated; finally, the crosses
represent the measurement of WHH. The top axis specifies the median value and the width of the distribution of rgc (in Mpc)
for four bins of width 0.5r200 , centered at (0.5, 1, 1.5 and 2) r200.

range of acceptance in rgc, our final relative uncertainty
on ∆vgc is higher.
Calculating the GR predication for ∆vgc is beyond the

scope of this study. However, the range of cluster masses
used in our analysis is comparable to that of the WHH
sample. We therefore refer to the corresponding esti-
mate of Kaiser of −9 (GR only) or −12 km/s (including
kinematic effects) [11]. Our results are in good agree-
ment with this prediction for rgc > r200, while at smaller
values of rgc, the profile of ∆vgc is steeper in the data.
Additionally, we observe that it is not possible to distin-
guish between the GR predictions with and without the
kinematic corrections.

SUMMARY

The gravitational redshift effect allows one to directly
probe the gravitational potential in clusters of galaxies.
As such, it provides a fundamental test of GR.
Following up on the analysis of Wojtak, Hansen &

Hjorth, we present a new measurement with a larger

dataset. We use spectroscopic redshifts taken with the
SDSS and BOSS, and match them to the BCGs of clus-
ters from the catalog of Wen, Han & Liu. The analysis
is based on extracting the GRS signal from the distri-
bution of the velocities of galaxies in the rest frame of
corresponding BCGs. We focus on optimizing the selec-
tion procedure of clusters and of galaxies, and take into
account multiple possible sources of systematic biases not
considered by WHH.
We find an average redshift of −11 km/s with a stan-

dard deviation of +7 and −5 km/s for 1 < rgc/r200 < 2.5.
The result is consistent with the measurement of WHH.
However, our overall systematic uncertainty is relatively
larger than that of WHH, mainly due to overlapping clus-
ter configurations; the significance of detecting the GRS
signal in the current analysis is therefore reduced in com-
parison. Our measurement is in good agreement with the
GR predictions. Considering the current uncertainties,
we can not distinguish between the baseline GR effect
and the recently proposed kinematic modifications.
With the advent of future spectroscopic surveys, such

as Euclid and DESI [19], we will have access to larger,



The calculational framework



Zhao, Peacock & Li, 2012
• δz is not just gravitational redshift

• Sources are moving, so we also see

• transverse Doppler effect:

• 1st order Doppler effect averages 
to zero, but.... 

• to 2nd order <δz> = <v2/c2>/2

• can be understood as time 
dilation

• Generally of same order of magnitude 
as gravitational redshift from virial 
theorem, Jeans eq...

• (And this doesn’t really test GR

• see also Bekenstein & Sanders, 2012 

• more later.....)

• Is that the full story?



No - there is another effect of same order

• Light cone effect

• we will naturally tend to see more objects moving away 
from us than towards us in any observation made using light 
as a messenger

• this gives an extra red-shift effect

• again of the same order of magnitude as the gravitational 
redshift



Light-cone effect

• Light cone effect

• we will see more galaxies moving away from us in a 
photograph of a swarm of particles

• past light cone of event of our observation overtakes 
more galaxies moving away than coming towards us

• just as a runner on a trail sees more hikers going the 
other way...

• So not Lorentz-Fitzgerald contraction effect

• phase space density contains a factor (1-v/c)

• <δz> = <(vlos/c)2>

• same sign as TD effect

• 2/3 magnitude (for isotropic orbits)



Quasar absorption lines



Light-cone effect - more particles moving away!



Another way to look at LC effect

• Particle oscillating in a pig-trough

• r(t) = a cos(ωt + φ)

• v(t)/c = -(aω/c) sin(ωt + φ)

• v(t) averages to zero

• average could be over phase or 
time

• but vobs = v + (r/c) dv/dt + ...

• where r/c is the look-back time

• and the extra term does not 
average to zero

• ~ same as Einstein prediction for 
Pound & Rebka

• δz ≈ <r dv/dt> / c2.



Why is the transverse Doppler effect a redshift?

• Transverse Doppler redshift effect:

• first order Doppler shift ~v/c is large but averages to zero

• residual is a quadratic ~(v/c)2 effect which caused randomly 
moving objects appear redshifted on average

• can also be understood as a time dilation effect

• But moving objects have more energy per unit mass (in the 
observer frame)

• So if they convert their rest mass to photons we should see a 
blue-shift of photons on average



Transverse Doppler Effect: Blue is the new Red

• Moving objects appear redshifted on average

• But moving objects have more energy per unit mass (in the 
observer frame)

• So photons should be blue-shifted on average

• Averaging over objects vs averaging over photons

• e.g. unresolved objects => blue shift (e.g. BCG or low 
resolution HI of total cluster z)

• here we have a hybrid situation:

• redshifts measured for objects

• but objects are selected according to flux density

• surface brightness modulation => net blueshift



Surface brightness modulation

• Line of sight velocity changes surface 
brightness

• relativistic beaming (aberration) plus 
change of frequency

• but doesn’t change the surface area

• so velocities modulate luminosity

• depends on SED: δL/L = (3 + α)v/c

• α ~= 2, so big amplification

• spectroscopic sample is flux limited at 
r=17.8

• Δn/n = - d ln n(>Llim(Z))/d ln L * ΔL/L

• opposite sign to LC, TD effects, but 
larger because the sample here is limited 
to bright end of the luminosity function

Gravitational Redshifts in Clusters 3

Figure 1. Spectral index vs. redshift for representative galaxy
types observed in Sloan r-band

luminosity function does not, and the parameters are not
very different from the field galaxy luminosity function, so
we will use the latter, as determined by Montero-Dorta &
Prada (2009), as a proxy. Their estimate of the LF obtained
from the r-band magnitudes K-corrected to Z = 0.1 has
M∗ − 5 log10 h = −20.7 and faint end slope of α = −1.26.
The resulting d ln n(> L)/d ln L, computed using the flux
limit r = 17.77 appropriate for the SDSS spectroscopic sam-
ple used by WHH, is shown as the dot-dash curve in figure
2.

Finally, we would like to compute the average of (3 +
α)d ln n(> L)/d ln L over the galaxies used. The 7,800 clus-
ters used by WHH were selected by applying a richness
limit to the parent GMBCG catalog (Hao, J., et al. 2010)
that contains 55,000 clusters extending to Z = 0.55. These
clusters were derived from the SDSS photometric catalog
that is much deeper than the spectroscopic catalog. Con-
sequently, at the low redshifts where the spectroscopically
selected galaxies live, this parent catalog is essentially vol-
ume limited for the clusters used, so the redshift distribu-
tion for the cluster members used is essentially the same
as that for the redshift distribution for the entire spec-
troscopic sample, save for the fact that the GMBCG cat-
alog has a lower redshift limit Zlim = 0.1, which is very
close to the redshift where dN/dZ = Z2n(Z) peaks. This is
the bell shaped curve in figure 2. Combining these we find
⟨d ln n/d ln L⟩ =

R

dZ Z2n(Z)d ln n/d ln L/
R

dZ Z2n(Z) ≃
2.0 with integration range 0.1 < Z < 0.4, and the average
⟨(3 + α(Z))d ln n(> L)/d ln L⟩ ≃ 10. This may be a slight
overestimate, as the cluster catalogue is not precisely vol-
ume limited and the actual dN/dZ may lie a little below the
solid curve in figure 2 at the highest redshifts.

With this value, the surface brightness modulation ef-
fect is roughly a factor 10 larger in amplitude than the light-
cone effect, but has opposite sign. For isotropic orbits the
combination of these gives a blue-shift 6 times as large as
the TD effect so the overall effect is therefore similar in am-
plitude to the TD effect but with opposite sign, so it causes
the total observed effect to be larger than the gravitational
effect alone rather than smaller.

Figure 2. The dot-dash curve is the logarithmic derivative of
the comoving density of objects above the luminosity limit as a
function of redshift. The bell-shaped curve is dN/dZ = Z2n(Z)
and the solid curve is that truncated at the minimum redshift
imposed by the parent cluster catalogue. The mean of the log-
derivative, averaged over the redshift distribution turns out to be
≃ 2.0.

4 EFFECT OF SECULAR INFALL

The discussion so far has focused mostly on the stable, viri-
alised regions. Clusters, however, are evolving structures and
the mass within a fixed physical radius M(< r) will in gen-
eral be changing. In the outer parts of clusters there will
be infall and the mass will be increasing with time. In the
centres of clusters there may be softening of the cores in
which would reduce the mass and would have an associated
outflow.

The combination of infall and the associated Ṁ will re-
sult in a positive offset of the mean line of sight velocity
since the density will be slightly higher in front of the clus-
ter where we see the galaxies later and these galaxies will
be moving against us. There is also a potentially larger ef-
fect from the fact that along any line of sight we observe
galaxies that lie in a cone that will be wider at the back
of the cluster, and at the same order, we need to allow for
the bias caused by the fact that the more distant galaxies
will be fainter. These geometric and flux limit effects, whose
effects on the foreground and background galaxies was dis-
cussed by Kim and Croft (2004), will cause a back/front
anisotropy in the number of galaxies within the clusters
∆N/N ∼ 2H∆r(1− δ(Z))/cz while the change in the phys-
ical density with time caused by the infall will cause an
asymmetry ∆N/N ∼ (r/c)(Ṁ/M) ∼ Hr/c, where we have
assumed that the mass within radius r for the ensemble av-
erage cluster is changing on a cosmological timescale. Evi-
dently, for low redshift clusters, the geometric and flux limit
effects will tend to be the largers.

To order of magnitude, the mean offset induced is
⟨βz⟩ ∼ H2r2/c2z. The gravitational potential, for compar-
ison, is Φ/c2 ∼ (δρ/ρ)H2r2/c2 where δρ/ρ ≃ 200 at the
virial radius. Thus, within the virialized region, this geo-
metric term is small compared to the gravitational redshift,
but further out at the turnaround radius where δρ/ρ ∼ 5,
this is a substantial correction.

c⃝ 0000 RAS, MNRAS 000, 000–000
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More implications of the transverse Doppler red/
blue-shift dichotomy

• Contribution to cluster grav-Z from motions of stars in the 
BCG

• velocity dispersions are smaller than in cluster, but not 
negligible

• stars are unresolved so we get a transverse Doppler blue-
shift

• 21cm radio observations of galaxies

• sees mostly galaxies falling into cluster for first time as gas is 
stripped within virial region

• should have a large potential difference relative to BCG

• but the prediction for δZ is highly dependent on whether 
one makes unresolved single dish (e.g. Aricebo) 
measurements or resolved (e.g. Westerbork, ASKAP)



Corrected grav-z measurement

• Fairly easy to correct for TD
+LC+SB effects

• TD depends on vel. disp. 
anisotropy

• LC+SB directly measured

• net effect is a blue-shift

• ~-9km/s in centre, falling 
to ~-6km/s at larger r

• minor effects from infall/
outflow velocity

• Substantial change in 
measured grav-z term

• but still consistent with 
dynamical mass estimate
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Supplementary Figure 2 Velocity dispersion profile of the composite cluster (left panel) and
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Figure 1 Velocity distributions of galaxies combined from 7, 800 SDSS galaxy clusters. The line-
of-sight velocity (vlos) distributions are plotted in four bins of the projected cluster-centric distances
R. They are sorted from the top to bottom according to the order of radial bins indicated in the
upper left corner and offset vertically by an arbitrary amount for presentation purposes. Red lines
present the histograms of the observed galaxy velocities in the cluster rest frame and black solid
lines show the best fitting models. The model assumes a linear contribution from the galaxies
which do not belong to the cluster and a quasi-Gaussian contribution from the cluster members
(see SI for more details). The cluster rest frames and centres are defined by the redshifts and the
positions of the brightest cluster galaxies. The error bars represent Poisson noise.
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Figure 3. Data points from figure 2 of WHH and prediction based
on mass-traces-light cluster halo profile and measured velocity
dispersions as described in the main text. The dashed line is the
gravitational redshift prediction, which is similar to the WHH
model prediction. The dot-dash line is the transverse Doppler
effect. The dotted line is the LC effect. The triple dot-dash line
is the surface brightness effect. The solid curve is the combined
effect.

would appear to be discrepant, but only at about the 1.5-
sigma level.

The NFW model predicts δz ≃ −10 km s−1/c for the
outer measurements r ≃ 3.3, 5.3Mpc, and the measurements
straddle this value. While this model may provide a reason-
able description for isolated clusters in the virialised domain,
it is not at all clear that it is appropriate to describe the com-
posite cluster being studied here. Tavio et al. (2008) have
claimed that beyond the virial radius the density in numer-
ical LCDM simulations actually falls off like ρ ∼ 1/r rather
than the ρ ∼ 1/r3 asymptote for the NFW profile, and the
extended peculiar in-fall velocities found by Cecccarelli et

al. (2011) also argue for shallow cluster profiles, but it is not
clear that these results are widely accepted.

An alternative, and possibly more reliable, approach is
to assume that galaxies trace the mass reasonably well, in
which case the density profile of the stacked cluster has the
same shape as the cluster-galaxy cross correlation function
(e.g. Lilje & Efstathiou, 1988; Croft et al , 1997). This has a
power-law dependence ρ ∼ r−γ with γ ≃ 2.2, i.e. intermedi-
ate between the NFW and Tavio et al. model predictions.

For space density ρ(r) = ρ0(r/r0)
−γ , where r0 is an ar-

bitrary fiducial radius, the potential is Φ(r) = Φ0(r/r0)
2−γ

and the 1-D velocity disperson, for isotropic orbits, is
σ2(r) = σ2

0(r/r0)
2−γ with Φ0 = 2((1 − γ)/(2 − γ))σ2

0 .
The projected velocity dispersion measured is related to

the 3-D velocity dispersion by σ2(r⊥)/σ2(r) =
R

dy y2−γ(1+

y2)−γ/2 but the projected potential is related to the 3-
D potential in the same way, so the projected quantities
are related by Φ(r⊥) = 2((1 − γ)/(2 − γ))σ2(r⊥). This
is the potential relative to infinity. The difference in pro-
jected potential between two projected radii r1 and r2 is
Φ(r2) − Φ(r1) ≃ 12σ2(r1)(1 − (r1/r2)

0.2) for γ = 2.2. The
resulting GR effect is shown as the dashed line in figure 3
and is actually quite similar to the shape of the profile for
the WHH NFW composite model.

The FWHM of the bell-shaped velocity distributions in

WHH figure 1 appear to decrease by about 15% between
the inner-bin and the outer points. This is reasonably con-
sistent with the expected σ2 ∝ r−0.2 trend predicted if
galaxies trace mass, but this is perhaps fortuitous since the
outer points are well outside the virial radius. Regardless
of whether the galaxies at large radius are equilibrated or
not, we can use the change in the observed velocity disper-
sion with radius to obtain the differential TD+LC+SB effect
which is shown, added to the GR effect, as the solid line in
figure 3. The kinematic effects flatten out the predicted pro-
file, so the prediction is quite different from the gravitational
redshift alone.

The situation is clearly rather complicated, especially
when using BGCs as the origin of coordinates since the ef-
fects depend on things like the relative velocities of the top
ranked pair of cluster galaxies, and on the BCG halo prop-
erties, that are quite poorly known. However, those factors
only influence the prediction for the innermost data point.
The empirically based theoretical prediction for the profile
of the redshift offset for the hot population as a function
of impact parameter at r⊥ > 0.6Mpc is the most robust;
if galaxies are reasonable tracers of the mass then profile
should be very flat, quite unlike the GR effect from a NFW
profile. The predicted GR and total effects are shown in fig-
ure 3. However, this analysis ignores the effect of secular
infall and out-flow which we consider next.

6 EFFECT OF INFALL AND OUTFLOW

The discussion so far has focused mostly on the stable,
virialised regions. Clusters, however, are evolving structures
and the mass within any fixed physical radius M(r) will in
general be changing. Outside of the virial radius (generally
considered, inspired by the spherical collapse model, to be
the radius within which the mean enclosed mass density is
3π/Gt2) we expect to see net infall, and the enclosed mass at
those radii will be increasing with time, while at still larger
radii there will be outflow tending asymptotically toward the
Hubble flow. In the spherical collapse model the transition
from inflow to outflow takes place at the turnaround radius
where the mean enclosed mass density is ρt = 3π/32Gt2.
This is for a matter dominated Universe; allowing for a cos-
mological constant makes only a small change (Lokas & Hoff-
man, 2001).

For the empirically motivated ρ = ρ0(r/r0)
−γ

model the mean enclosed mass is ρ(r) = 3(γ −
1)(2πG)−1σ2

0rγ−2
0 r−γ and the nominal virial radius is rvir =

((γ − 1)σ2
0rγ−2

0 t2/2π2)1/γ ≃ 1.8Mpc using γ = 2.2, r0 =
1Mpc, σ0 = 545 km/s and t ≃ 1/H = 1/(70 kms−1/Mpc)
and turnaround is at rt ≃ 8.7Mpc.

In the centres of clusters there may be softening of the
cores which would reduce the enclosed mass and would have
an associated outflow.

In any single cluster, the density may be changing
rapidly — on the local dynamical timescale — especially
during mergers and as clumps rain in, but for a compos-
ite cluster such as considered here these rapid changes will
average out and the mass can only change on a cosmologi-
cal timescale: Ṁ ∼ HM . For power law profile with γ ≃ 2
M ≃ 4πρr3 and Ṁ ≃ 4πρr2v, where v is the mean infall ve-

c⃝ 0000 RAS, MNRAS 000, 000–000



What does it all mean?

• Effect is very small - and hard to measure

• measuring 10km/s mean offset with 600km/s velocity 
dispersion is truly impressive

• requires careful modeling of background & cluster velocity 
distribution function f(v)

• and predicting potential from kinematics is not trivial

• rather sensitive to assumed velocity distribution for the 
brightest cluster galaxies (BCGs) used as centres

• but it probably is a real measurement of gravitational 
redshift (+ special relativistic nuisance factors)



What else does it mean?

• Probe of curvature of space in GR?

• matter tells space how to curve

• space tells matter how to move....

• Sadly no....

• Effect does not rule out any most metric theories of gravity

• motion non-relativistic matter & gravitational redshifts are 
determined only by ‘gtt’; the spatial metric is irrelevant 

• It is really a test of the equivalence principle

• Provides a test of theories that invoke long-range non-
gravitational forces in the “dark sector”

• e.g. Gradwohl & Frieman 1992; Farrar & Peebles 2004; 
Farrar & Rosen 2007; Keselman, Nusser & Peebles 2010; and 
many, many more....  and (maybe) f(R) gravity.

• though such theories are already constrained by X-ray 
temp. vs galaxy motions in clusters....



Future prospects...

• Can expect immediate improvements in measurement

• 3x increase in number of redshifts available (BOSS)

• and more to come: 

• optical: big-BOSS

• radio: FAST, ASKAP-Wallaby+WNSHS

• interesting to compare unresolved radio and optical

• Extension to larger scales....

• Lots of rich material in the front-back asymmetry of the galaxy 
correlation function.



What's wrong with the "kinematic picture"?

• Recall Bunn & Hogg: "A gravitational redshift is just a Doppler 
shift viewed from an unnatural coordinate system"

• Confusion of gravity and acceleration

• Einstein rocket thought experiment:

• the redshift caused by rocket motor is just a Doppler shift

• From this perspective Pound & Rebka did not measure a 
gravitational redshift; they measured the non-gravitational 
redshift caused by the laboratory being accelerated

• In GR the gravitational field is the Riemann tensor

• or the tidal field in the Newtonian limit

• So is there a truly gravitational component to the redshift?



Are gravitational and Doppler shifts the same?

• Heavy lines are pair of 
accelerated observers

• with same constant 
acceleration

• Light lines are a pair of 
freely falling observers

• These pairs perceive the 
same redshift for the photon 
(wiggly line)

• Redshift only depends on 
instantaneous velocity, not 
on the path before or after 
the interaction event.

• But is this gravity?

4 Nick Kaiser

✲
x

✻t

!

!

Figure 1. Schematic space-time diagram for exchange of a pho-
ton in flat space-time between a pair of freely-falling observers
(thin lines) and between a pair of observers being subject to non-
gravitational acceleration (thick lines). Relative motions and ac-
celerations are assumed here to be aligned with the photon path.
Bunn & Hogg (2009) pointed out that for any such photon path
and freely falling observers the emission and reception events can
be taken to lie on the world lines of a pair of observers who live
on opposite ends of a uniformly accelerating rod with those world
lines being tangent to those of the freely falling observers. This is
possible since one can choose the initial position and velocity of
the rod to make the observer at one end of the rod be co-located
and co-moving with the freely falling emitter at the emission event
and one can then choose the length of the rod and its acceleration
so that, by the time the photon reaches the freely falling receiver
the other end of the rod has caught up with it. The accelerated
observers perceive the rod to have fixed length, though in the
‘lab-frame’ the rod will appear progressively foreshortened. The
freely falling observers view the redshift as a Doppler effect with
∆λ/λ = ∆v/c (for ∆v ≪ c) caused by their relative motion. The
accelerated observers would note that the redshift is related to
their acceleration a and the rod length l by ∆λ/λ = al/c2.

name, GR is an absolute theory since whether or not there is
a gravitational field in some region of space is unambiguously
measurable from geodesic deviation of freely-falling test par-
ticles (though the values of the components of the curvature
tensor are coordinate system dependent). The curvature, or
tidal field, is unaffected by the presence of any observers
(real or imaginary) who might be accelerated by rockets.1 If
the curvature vanishes in the region of space-time containing

1 Rindler (1970) gives an interesting argument, which he at-
tributes to Dennis Sciama, that the weight of objects sensed by an
accelerated observer in a rocket can be thought of, in a Machian
sense, as gravity arising from the relative acceleration of the rest
of the Universe. That argument cannot be applied here, since the
acceleration of the imaginary intervening observers is determined
by the arbitrary choice of their velocities; this is generally varying
along the photon path and the gradient of this is not equal to the
real tidal field.

the observers and the photon path then whatever happens
there can hardly be said to be a gravitational redshift.

Similarly, while the velocity of an object depends on
the frame from which it is observed, the relative velocity
of two objects in their centre of velocity frame is another
absolute quantity. Accelerated observers know that they are
being accelerated. Once they allow for this the accelerated
observers here would be in full agreement with the cop as
to how fast the motorist was approaching.

It is true that in the Pound & Rebka (1959) experiment
the wavelength shift ∆λ/λ = gh/c2 they measured is the
same as the (constant) relative velocity of a pair of hypo-
thetical freely-falling observers launched so as to be tangent
to the world-lines of the actual emitter and receiver at the
interaction events (this being the relative velocity in the
‘lab’ or in the centre of velocity frame – the difference be-
ing negligible – but not the difference in velocities at times
of the actual events). But that is just telling us that this
experimental result is fully accounted for by the fact that
the real apparatus is being accelerated by non-gravitational

stresses in the instrument supports and in the planet that is
standing in the way of its natural free fall. From a Syngean
perspective, Pound & Rebka did not measure a gravitational

redshift at all as their experiment was simply not sensitive
enough to measure the gravitational curvature or tide.

Accelerated observers are interesting, but are something
of a distraction. For redshifts between galaxies there are no
non-gravitational forces to worry about; all real sources and
observers are freely-falling. Knowledge of the tidal field in
the vicinity of the observers and along the photon path is
then all that is needed to calculate how the observers’ mo-
tions evolve and how photons exchanged between them get
redshifted. It does not matter that the gravity g is only de-
termined by local measurements up to an additive constant
vector as that has no effect on any measurements made by
observers in free-fall in the region where the tide has been
determined.2

So there is no ambiguity in defining the gravitational
field, or in calculating its influence on photons or observers’
trajectories. The only possible ambiguity here is that if there
is non-vanishing tidal field and if one tries to decompose the
redshift into a 1st order Doppler effect and a gravitational
effect then the latter will depend, possibly quite sensitively,
on the time at which one choses to compare velocities to
obtain the first order term. This is analogous to the inter-
pretation of the Bondi gravitational term as a correction of
the Doppler term from final time to average time (see also
Chodorowski 2011). But the redshift itself is not ambigu-
ous, and if the relative velocity is chosen to be either at the
time of emission, reception or, say, half way along the pho-
ton path there is no ambiguity. And, as we shall see, if we
compare the redshift to the change in separation D – which
involves an average of the velocity over the photon travel
time – there is no ambiguity either.

2 For example, while it is widely believed that the dipole
anisotropy of the microwave background is the result of our be-
ing accelerated by large-scale structure, it is possible that some of
the dipole is generated by a large-scale specific entropy gradient
(Gunn 1988), but this indeterminacy of the local value of g has
no effect on local dynamics within the milky way or within the
local supercluster say.
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Equivalence principle & the Pound + Rebka experiment

• Einstein’s Equivalence Principle: Observers on earth (being 
accelerated by the stress in the ground under them imparting 
momentum to them) will see light being red-shifted (and all other 
local physics being modified) exactly as would a pair of astronauts in 
empty space being accelerated by a rocket motor. 

• Pound and Rebka (1959, 1960):  He was right.

• But if you replace non-inertial apparatus by freely falling kit with same 
instantaneous velocities then B&H say Doppler formula will apply.  
They are right too - almost exactly....



Why is the gravitational-z hidden in cosmology?
• Cosmological redshift a la Bondi

• Consider expanding sphere of dust 
and source A sending photon to 
receiver B

• Photon suffers gravitational red-shift 
climbing up the potential and then a 
Doppler red-shift on reception

• For source B sending to A the photon 
has a Doppler red-shift (as seen in our 
frame) then enjoys a gravitational 
blue-shift

• But the net effect is the same. 

• The opposite gravitational shifts are 
cancelled by the Doppler shift change

A

B



Whereas in general.....
• Consider pair of freely-falling observers 1,2 in arbitrary 

gravitational field who exchange a photon.

• Use rigid, non-rotating lattice picture to calculate changes in 
wavelength and proper separation (work in CoM frame)

• work to 2nd order in v/c and 1st order in φ/c2

• Δλ/λ = n . (v1 - v2)t1 / c + ∫dr . (g2 - g(r)) / c2     (1) 

• ΔD/D = n . (v1 - v2)t1 / c + Δr . (g2 - g1) / 2c2        (2)

• Both are 1st order Doppler (with initial Δv) plus ‘tidal’ term

• Spatially constant tidal field stretches λ just like D

• includes Minkowski spacetime and FRW

• but that's because of special symmetry of FRW

• does not apply for a galaxy cluster

• extra intrinsically gravitational term (gradient of tide)
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.

✲
r

✻W2 = (r2 − d2)θ(|r|− d)/2

✲
r

✻W1(r) = −W ′
2(r)

✲
r

✻W0(r) = −W ′
1(r)

+d

−d

Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2

„

d n · (g1 + g2) −

Z

dr · g

«

(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.

✲
r

✻W2 = (r2 − d2)θ(|r|− d)/2

✲
r

✻W1(r) = −W ′
2(r)

✲
r

✻W0(r) = −W ′
1(r)

+d

−d

Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2
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d n · (g1 + g2) −
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(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2
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drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.
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Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
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d n · (g1 + g2) −
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where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
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dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
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Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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more by parts to express the difference of these as a weighted
average of φ′′′(r):

∆ log(λ/D) =
1
c2

Z

dr W2(r)φ
′′′(r) (9)

with weight function W2(r) = (r2−d2)θ+(r)θ−(r)/2 = (r2−
d2)θ(|r|− d)/2 now shown as the bottom plot in figure (4).
This is the second main result of this paper.

3 DISCUSSION

We have made various simplifying assumptions. The results
are only valid up to 2nd order in velocity and 1st order in
the potential, but this is adequate to encompass the phe-
nomena that have proved controversial. We have ignored
any time variation of the potential, and we have also ig-
nored any bending of light rays. These are higher order ef-
fects; the Rees-Sciama (1968) effect is of order (v/c)3 for
instance. We can also ignore spatial curvature. In a FRW
model, for example, the distance between two FOs as mea-
sured by observers on a ruler is not precisely the same as
the distance as determined by a chain of FOs lying along
a geodesic in the 3-space of constant proper time since the
big-bang, but the fractional difference is at most of order the
square of the separation in units of the curvature radius (or
of order (v/c)2) so any effect on ∆D/D is of higher order.
Similarly the asynchronicity between clocks carried by our
non-inertial grid-based observers is negligible at our stated
level of precision.

More fundamentally while matter tells space-time how
to curve, it is only the curvature of time that tells non-
relativistic matter how to move, and is is also only the time-
time part of the metric perturbation that is relevant for the
calculation of the redshift. So at the specified level of preci-
sion we can ignore the spatial part of the metric.

We have asked: what is the domain of validity of the re-
lationship between wavelengths and emitter/receiver proper
separation (1) that we see for FOs in homogeneous mod-
els? We have shown that a spatially constant tide stretches
wavelength in exactly the same way it affects the observers’
separation, but if the tide varies with position the relation-
ship between wavelength and separation is modified.

From this perspective, the perfect correlation seen be-
tween changes in wavelengths ∆λ/λ of light exchanged be-
tween FRW FOs and the change ∆D/D in the space (be-
tween said FOs) is not a causal relationship, rather both
the change in the wavelength and the change in the space
between the observers are ‘caused’, or determined, by a com-
bination of the observers’ initial velocities and the tidal field
in which they and the photons propagate. Echoing Whiting
(2004), the expansion rate defined by the matter content
of the universe is irrelevant (which is a jolly good thing if
the universe has a cosmological constant or a scalar field
to realise dark energy since neither defines either a frame of
motion or a state of expansion). Rather, on the parabolic po-
tential generated by gravitating matter and dark energy one
can have emitter/receiver pairs that recede from each other
or pairs that approach each other, and what determines both
the changes in the wavelengths and proper separations is a
combination of initial conditions and the curvature, or tidal
field.

The perfect correlation of ∆ log(λ) and ∆ log(D) in ho-
mogeneous models can be considered to be a reflection of
the symmetry of the gravitational fields that are allowed in
these models, in accord with the conjecture of Melia (2012).

In the Introduction we asked what redshift would be
seen by a pair of observers in a cluster who have the same
separation at emission as at reception. Our analysis shows
that they do not see the effect of any local tidal field. What
happens is that any gravitational stretching of the wave-
length that would be perceived in the frame of the rigid non-
inertial observers is counteracted by the red- or blue-shifts
in boosting from the observers’ frames to the rigid frame
and back again (if, for example they were moving apart at
the emission time they will be moving together again by the
time of reception).

In an inhomogeneous system such as the solar system,
or a galaxy, cluster or supercluster, the tidal field neces-
sarily varies with position. There is then a non-kinematic
component to the redshift that violates (1) and which is es-
sentially gravitational in nature. Combining this with the
kinematic redshift component, if any, one obtains complete
consistency with the conventional view of the gravitational
redshift in clusters of galaxies and other gravitating systems.
Note that our description of components of the redshift is
different from the terminology of Chodorowski (2011) who
was considering the gravtiational component of the redshift
in FRW models that arises if the ‘kinematic’ component is
taken to be the relative velocity at emission or reception
rather than the average velocity. Here we consider redshifts
between observers in FRW models to be purely kinematic
in the sense that (1) is obeyed.

For emitter/receiver pair separation that is small com-
pared to the size of the gravitating system the difference
between the fractional change in the wavelength and sep-
aration is on the order of the gravitational potential well
depth times the cube of the separation in units of the over-
all system size. This is seen most easily from (9), and the
fact that W2(r) ∼ d2, which together imply ∆ log(λ/D) ∼
(d/R)3φ/c2. So, just as the local gravity is invisible to freely-
falling observers, as far as the ratio of wavelength to separa-
tion is concerned, the local tide is also invisible. But if the
path length has a similar size to the entire system the error
is on the order of the gravitational potential.

To see better how this relates to Synge’s result that
the redshift is always given by the Doppler formula, con-
sider the case of an emitter at the centre of the poten-
tial for a small uniform spherical distribution of matter of
mass M and radius r and a receiver outside at distance
D ≫ r who happens to be at rest at the moment of re-
ception. In this situation, the redshift is just the static
gravitational redshift: ∆λ/λ =

R

dr g/c2 ∼ GM/c2r. But
the more distant the receiver, the smaller any fractional
change in the emitter/receiver proper separation during
the time of flight: ∆D ! (GM/D2)(∆t)2/2 which implies
∆D/D ! GM/c2D ≪ ∆λ/λ. Evidently the kinematic re-
lation does not apply here. But, following Peebles, we can
still break the net wavelength ratio down into the product
of ratios between a set of pairs of neighbouring particles.
We can take these to be particles on a set of radial orbits
such that each particle is at apogee at the time the photon
passes (see Fig. 5). Thus the nth particle has zero velocity
as the photon passes it, as does the (n+1)th particle. In the
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it is if the relative velocity is taken to be in the rest-frame,
or whether it also involves the gravity, as is the case if the
velocity difference is at different times. This is at odds with
Synge’s statement that the curvature does not appear in the
redshift.

What about the change in the separation during the
light-propagational time? Letting the centre of velocity
frame separations, in the absence of gravity, at reception
and emission be DR, DE = (D ± ∆D/2) we see from the
caption of Fig. 3 that ∆D/D is not precisely the same as
the flat-space ∆λ/λ = 2µβ. But the difference is of order
β3, so to our precision goal we can take them to be equal.
Switching on gravity, the fractional change of the separation
between the particles as measured by lattice based observers
– i.e. the change in the proper separation in the centre of
velocity frame – is

∆D/D = n · (v2 − v1)t1/c + ∆r · (g2 − g1)/2c2 (4)

which is also a simple Newtonian looking result. Unsurpris-
ingly, to first order in the relative velocity the fractional
changes in wavelength and separation are identical. Both
contain an additional gravitational term that is, to lowest
order, a tidal effect. In general, these gravitational effects
are not precisely equal – g2 − g1 is the integral of the tide
while the wavelength shift involves the integral of the grav-
ity – so the ‘cosmological relation’ that wavelengths vary
precisely in proportion to the source-observer proper sepa-
ration, does not hold in general.

But if the tide is spatially constant – i.e. the poten-
tial has no spatial derivatives higher than second – then
the gravity varies linearly with position then we can write
g(r) = g1 + (g2 − g1)|r− r1|/|r2 − r1| and the gravitational
terms are readily found to be identical. Thus the relation
seen in cosmology is of wider generality, and applies for an
arbitrary pair of particles moving in a field that has a spa-
tially constant tide. This includes, as a special case, a pair
of particles with relative motion along their separation in a
quadratic potential as in a FRW model containing matter
and/or dark energy. Note that there is no need for the parti-
cles to be co-moving with the matter density, though again
this result does apply in that situation.

This is one of the two main results of this paper: a con-
stant tide stretches wavelength of radiation just as it changes
the separation of test-particles. Arguably this ‘explains’ the
apparent stretching of wavelength of light by the expansion
of space in FRW models.

To highlight the differences between separation and
wavelength changes – what one might call the ‘non-
kinematic’ component of the redshift – and to see how this
depends on the tide (and its derivatives) we note the follow-
ing:

First, we can write

∆D/D = n · (v2 − v1)t1/c −
∆r
2c2

Z

drφ′′(r) (5)

where φ(r) = φ(rn) is the gravitational potential and prime
denotes the operator ∂r = n · ∇, i.e. the spatial derivative
along the photon path, so φ′(r) = n ·∇φ(r) = −n · g. Thus
the gravitational contribution to ∆D/D is the average of
the tide along the photon path times (∆r/c)2/2.

✲
r

✻W2 = (r2 − d2)θ(|r|− d)/2

✲
r

✻W1(r) = −W ′
2(r)

✲
r

✻W0(r) = −W ′
1(r)

+d

−d

Figure 4. The upper plot shows, schematically, the dimensionless
weight function W0(r) = θ+(r)θ−(r) − d(δ(r − d) + δ(r + d))/2
that, when multiplied by the gravity φ′(r) gives the difference
∆λ/λ − ∆D/D. The Dirac δ-functions are shown as the narrow
box-cars at r = ±d and together have (minus) the same weight as
the central box-car. As described in the text, this difference can
also be computed as a weighted average of the tide φ′′(r) using
the weighting function W1(r) shown in the centre plot, which is
(minus) the integral of W0(r), and also has zero net weight. The
third way to compute the difference is averaging the gradient of
the tide φ′′′(r) with the weight function shown in the bottom
plot.

Second, taking the difference of (3) and (4), we have

∆ log(λ/D) =
1
c2

„

d n · (g1 + g2) −

Z

dr · g

«

(6)

where d ≡ |r2 − r1|/2. Taking the origin of coordinates to
lie at (r1 + r2)/2 for simplicity, this is a weighted average of
the gravity −φ′:

∆ log(λ/D) =
1
c2

Z

dr W0(r)φ
′(r) (7)

with dimensionless weighting function W0(r) ≡
θ+(r)θ−(r)−d(δ(r−d)+δ(r+d))/2; where φ(r) ≡ φ(r = rn);
and where θ±(r) ≡ θ(±r − d) with θ(r) and δ(r) denoting
the Heaviside function and the Dirac delta function respec-
tively. The weight function W0(r) is shown schematically
as the upper plot in Fig. 4. The product of Heaviside
functions is zero for |r| > d so the range of integration is
now unrestricted. The integral of W0(r) over all r vanishes,
so we can immediately integrate by parts to eliminate the
gravity and write (7) as an integral of the tide:

∆ log(λ/D) =
1
c2

Z

dr W1(r)φ
′′(r) (8)

where W1(r) = −
R

dr W0(r) = −rθ+(r)θ−(r) which is
shown is the middle plot in Fig. (4). But the integral of
W1(r) also vanishes (so, as already mentioned for spatially
constant tide ∆λ/λ = ∆D/D) and we can integrate once
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Subtracting (1) - (2) gives 

There is a non-kinematic component of the redshift: it is a 
measurement of the gradient of the tide

or



Conclusions

• Gravitational redshifts in clusters of galaxies have been 
measured!

• Technically challenging but apparently real and prospects for 
better measurements and extension to larger scales is 
promising.

• Potentially useful for testing some alternatives to GR

• But mainly interesting as a "sand-box" that illustrates some 
subtleties of simple special relativity + Newtonian gravity

• Effect raises some questions of principle about how to think 
about redshifts in cosmology and astronomy in general.

• Redshifts are not entirely kinematic - there is an truly 
gravitational component - but it is hidden in cosmology





A strange incident in the history of 
physics (C. Moller, 1967) 

• 1905 - Einstein establishes SR

• By 1909, Planck, Einstein, Pauli all concluded that temperature of 
a moving body is T(rest frame) / γ

• Enshrined in text books (e.g. Tolman) and there it rested

• until ‘60s, when Ott (1963) and Arzelies (1965) turned it all 
around T = γ T(rest frame)

• much confusion ensued

• P.T. Landsberg (2 Nature articles, ’66, 67) “Does a moving 
body appear cool” (ans: no!)

• largely clarified by Kibble, ’66: Ott, Arzelies were right!

• issue reverberates to this day:

• Dunkel, Haenggi, & Hilbert 2009 - light-cone effect 

• But now seems anachronistic....
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Doppler red shift

Planck! Einstein

Blanusa!Ott

Landsberg

Doppler blue shift

!1.0 !0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

w2

T 1
!T
2

Figure 1. Ratio of the temperatures of the observed body in its
rest frame, T2 to that shown by an ideal thermometer, T1 as a
function of the the speed of the heat current in the body, w2 while
approaching with the relative velocity v = −0.6.

v"!0.6

u1

u2

w1 w2

g1
g2

Figure 2. The space-time figure for the Planck-Einstein rule of
two thermodynamic bodies in equilibrium. There is no energy
current in the observed body (wa

2 = 0), therefore the ua
2 four-

velocity (solid arrow) is parallel to the vectors (ga1 , g
a
2 ). The ratio

of the temperatures is T1/T2 < 1.

5. Summary

We investigated the possible derivation of basic thermodynamical laws for ho-
mogeneous bodies from relativistic hydrodynamics. The dependence of entropy
on internal energy is replaced by a dependence on the energy-momentum four-
vector, Ea. As a novelty a relativistic heat four-vector has been formulated. For
the traditional, energy exchange related temperature, T , a universal transforma-
tion formula is obtained. For a general observer four velocities are involved in the
equilibrium condition of two thermodynamic bodies in equilibrium. One of them
can be eliminated by choosing the observing frame, the physical relation depends
only on the relative velocity. Another condition connects the internal heat currents
in the bodies in thermal contact. So there remains two velocity like parameters
to describe thermal equilibrium: the energy current speed (the velocity related to
the integrated internal heat current density) in one of the bodies and their relative

Biro & Van 2010



Conclusions: 1) redshifts in general
• Redshifts in FRW are not caused by the expansion of space

• both changes in wavelength and changes in the space 
between observers are ‘caused’ by the initial relative 
velocities and the tidal field in which the observers and 
photon move.

• In homogeneous models they happen to be equal because a 
constant tide stretches λ the same way it stretches D

• But neither can they be thought of as being essentially 
kinematic, or Doppler, in nature in presence of inhomogeneity

• that gives the wrong answer for the gravitational redshift 
component of the redshift

• which is an integral of the gradient of the tide along the 
photon path

• Allowance for this largely reconciles conventional view with 
direct calculation (modulu kinematic TD, LC, SB effects)



Conclusions: 2) cluster gravitational-Z

• Gravitational redshifts in clusters have been measured!

• but the interpretation is considerably more complicated than 
originally thought

• The static gravitational redshift is augmented by 3 other 
kinematic effects that are generally of the similar magnitude

• time dilation + light-cone effect + relativistic beaming

• These measurements essentially provide a test of the 
equivalence principle

• i.e. whether light and galaxies “fall” the same way in clusters

• constrains “5th force” theories

• and we can expect more precise measurements in the near 
future



Gravitational Redshifts in Clusters 3

Figure 1. Spectral index vs. redshift for representative galaxy
types observed in Sloan r-band

luminosity function does not, and the parameters are not
very different from the field galaxy luminosity function, so
we will use the latter, as determined by Montero-Dorta &
Prada (2009), as a proxy. Their estimate of the LF obtained
from the r-band magnitudes K-corrected to Z = 0.1 has
M∗ − 5 log10 h = −20.7 and faint end slope of α = −1.26.
The resulting d ln n(> L)/d ln L, computed using the flux
limit r = 17.77 appropriate for the SDSS spectroscopic sam-
ple used by WHH, is shown as the dot-dash curve in figure
2.

Finally, we would like to compute the average of (3 +
α)d ln n(> L)/d ln L over the galaxies used. The 7,800 clus-
ters used by WHH were selected by applying a richness
limit to the parent GMBCG catalog (Hao, J., et al. 2010)
that contains 55,000 clusters extending to Z = 0.55. These
clusters were derived from the SDSS photometric catalog
that is much deeper than the spectroscopic catalog. Con-
sequently, at the low redshifts where the spectroscopically
selected galaxies live, this parent catalog is essentially vol-
ume limited for the clusters used, so the redshift distribu-
tion for the cluster members used is essentially the same
as that for the redshift distribution for the entire spec-
troscopic sample, save for the fact that the GMBCG cat-
alog has a lower redshift limit Zlim = 0.1, which is very
close to the redshift where dN/dZ = Z2n(Z) peaks. This is
the bell shaped curve in figure 2. Combining these we find
⟨d ln n/d ln L⟩ =

R

dZ Z2n(Z)d ln n/d ln L/
R

dZ Z2n(Z) ≃
2.0 with integration range 0.1 < Z < 0.4, and the average
⟨(3 + α(Z))d ln n(> L)/d ln L⟩ ≃ 10. This may be a slight
overestimate, as the cluster catalogue is not precisely vol-
ume limited and the actual dN/dZ may lie a little below the
solid curve in figure 2 at the highest redshifts.

With this value, the surface brightness modulation ef-
fect is roughly a factor 10 larger in amplitude than the light-
cone effect, but has opposite sign. For isotropic orbits the
combination of these gives a blue-shift 6 times as large as
the TD effect so the overall effect is therefore similar in am-
plitude to the TD effect but with opposite sign, so it causes
the total observed effect to be larger than the gravitational
effect alone rather than smaller.

Figure 2. The dot-dash curve is the logarithmic derivative of
the comoving density of objects above the luminosity limit as a
function of redshift. The bell-shaped curve is dN/dZ = Z2n(Z)
and the solid curve is that truncated at the minimum redshift
imposed by the parent cluster catalogue. The mean of the log-
derivative, averaged over the redshift distribution turns out to be
≃ 2.0.

4 EFFECT OF SECULAR INFALL

The discussion so far has focused mostly on the stable, viri-
alised regions. Clusters, however, are evolving structures and
the mass within a fixed physical radius M(< r) will in gen-
eral be changing. In the outer parts of clusters there will
be infall and the mass will be increasing with time. In the
centres of clusters there may be softening of the cores in
which would reduce the mass and would have an associated
outflow.

The combination of infall and the associated Ṁ will re-
sult in a positive offset of the mean line of sight velocity
since the density will be slightly higher in front of the clus-
ter where we see the galaxies later and these galaxies will
be moving against us. There is also a potentially larger ef-
fect from the fact that along any line of sight we observe
galaxies that lie in a cone that will be wider at the back
of the cluster, and at the same order, we need to allow for
the bias caused by the fact that the more distant galaxies
will be fainter. These geometric and flux limit effects, whose
effects on the foreground and background galaxies was dis-
cussed by Kim and Croft (2004), will cause a back/front
anisotropy in the number of galaxies within the clusters
∆N/N ∼ 2H∆r(1− δ(Z))/cz while the change in the phys-
ical density with time caused by the infall will cause an
asymmetry ∆N/N ∼ (r/c)(Ṁ/M) ∼ Hr/c, where we have
assumed that the mass within radius r for the ensemble av-
erage cluster is changing on a cosmological timescale. Evi-
dently, for low redshift clusters, the geometric and flux limit
effects will tend to be the largers.

To order of magnitude, the mean offset induced is
⟨βz⟩ ∼ H2r2/c2z. The gravitational potential, for compar-
ison, is Φ/c2 ∼ (δρ/ρ)H2r2/c2 where δρ/ρ ≃ 200 at the
virial radius. Thus, within the virialized region, this geo-
metric term is small compared to the gravitational redshift,
but further out at the turnaround radius where δρ/ρ ∼ 5,
this is a substantial correction.
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Supplementary Figure 2 Velocity dispersion profile of the composite cluster (left panel) and
constraints on the concentration parameter cv and the logarithmic slope of the mass distribution
α (right panel) from fitting the velocity dispersion profile with an isotropic (blue) or anisotropic
(red) model of galaxy orbits. The solid lines in the left panel show the best-fitting profiles of the
velocity dispersion profile. The contours in the right panel are the boundaries of the 1σ and 2σ
confidence regions of the likelihood function. The error bars in the left panel represent the range
containing 68 per cent of the marginal probability.
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Possible resolution of static and “kinematic” view?

• Consider particles in 
equilibrium in potential 
well 

• photon emitted by 
“cold” particle at 
bottom of potential 
well and received by 
randomly chosen “hot” 
particle at larger radius

• For quadratic potential, 
Synge’s velocity is the 
average velocity over 
the time of flight of the 
photon

• Reconciles “kinematic” 
view with Δλ/λ = Δφ

• But is this generally 
true? 

Redshifts and the Expansion of Space 5

What then of points (ii) and (iii) above, that one should
consider all redshifts to be Doppler, or kinematic, in nature
and that, perhaps with restrictions on recession velocity and
curvature, one should be confident in applying the Doppler
formula?

The legitimacy of considering any redshift to be the
product of a lot of little Doppler shifts (with the under-
standing that the relative velocity for each pair of particles
is in their centre-of-velocity frame) is not in question. Nor
is Synge’s result that the overall redshift is given by the
Doppler formula and that, for low redshift, Synge’s velocity
must be equal to the sum of the incremental velocities as de-
fined here. But the burning question is: What does this net
‘velocity’ mean physically? As Synge said, arguments about
whether a spectral shift is a gravitational or velocity effect
are just ‘windy warfare’ without analysing the meaning of
the terms being employed. So, how does Synge’s velocity
relate to the actual relative velocity of the source and ob-
server?

Bunn & Hogg shy away from this question and deny the
legitimacy of considering the relative velocity or separation
of observers as we have used the terms above. They argue
that one needs to talk about vrel, the velocity of a galaxy
then relative to us now ; that it is hard to define relative ve-
locity of two separated observers in curved space-time; that
all one can do is parallel transport, and that the only ‘nat-
ural’ choice of path is the null-ray of the photon. That all
sounds very reasonable. But if this were the only way to de-
fine relative velocity then to say that redshift is a velocity
effect would be circular. Saying that the redshift is given
by the Doppler formula if the velocity can only be deter-
mined by taking the inverse Doppler function of the redshift
is not very useful. In contrast, saying that the redshift be-
tween FOs in FRW models is kinematic is meaningful since
the fractional change of wavelength really is equal to the
fractional change in proper separation. This is not a mathe-
matical identity, but a relationship that holds between two
distinct physical entities.

There are many ways, in principle at least, to directly
measure the relative velocity of a pair of observers that are
independent of the redshift, at least at low redshift. One can
use rate of change of parallaxes or light-echo time delays. It
has been suggested that one can directly measure velocities
on cosmological scales by the shrinking of the angular size
of bound objects with time (Darling 2013). And one could,
in principle, use rate of change of luminosity of standard
candles. It may not be practically achievable, but one can
imagine a very large rigid lattice populated with observers
with clocks and rulers who record the rate of motions of ob-
servers flying past. This, after all, is how we usually imag-
ine measuring geodesic deviation in order to determine the
gravitational field. The question here is not whether this
can be done in practice; only whether it is possible in prin-
ciple. As we describe below, we are free to construct the
lattice such that the velocities of the emitter and receiver
relative to the lattice are equal and opposite. All of these
concepts converge, at low redshift, to an unambiguous oper-
ational definition of relative velocity in the centre of veloc-
ity frame.3 This, of course, is the physical quantity that one

3 It is hard to understand the reluctance to consider such veloc-

✲
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❜

❜❄
✻

g(∆t)2/2

∆t✛ ✲

Figure 2. Illustration of situation described in text where a pho-
ton is emitted by a ‘cold’ particles near the centre of a smooth
potential well and is received by a randomly chosen ‘hot’ parti-
cle at large distance. A sample of orbits from the distribution of
velocities – here a simple box-car – is shown as curves. The orbit
for the average velocity particle is shown as the heavy curve. The
average radial velocity is zero at the time of reception, but the
average velocity over the time-of-flight of the photon is −g∆t/2
and, for a parabolic potential, this velocity, in units of c is equal
to the gravitational redshift. It is tantalising to think that a gen-
eralisation of this reconciles the GR kinematic view of redshifts
with more conventional view of gravitational redshifts.

would normally associate with the phrase ‘relative-velocity’
(rather than the relatively abstract definition in terms of the
mathematical operation of parallel transport).

In the weak-field limit, and for stationary non-inertial
observers, Synge’s relative velocity is ∆v =

R

dr · g/c. As
discussed, in the context of the Pound-Rebka experiment,
this is the same as the constant relative velocity of a pair
of particles launched so as to be tangent at the interac-
tion events. But that is a flat-space (constant gravity) phe-
nomenon. More interesting is how the velocities are related
when curvature cannot be neglected. To this end, consider
test particles in dynamic equilibrium in a static potential
well. Imagine a dark matter halo that generates a smooth
bowl-shaped potential well and imagine two families of test
particles; a ‘hot’ high energy population and a ‘cold’ low
energy population that have have relatively negligible ve-
locities and are confined to the very centre of the halo. The
conventional view is that photons emitted from a cold parti-
cle and received by a randomly chosen hot particle at larger
radius will on average suffer the usual static gravitational
redshift ⟨∆λ⟩/λ ≃ ∆φ/c2, and that photons emitted by a
randomly chosen hot particle and received by a cold par-
ticle will be blue-shifted by the same amount. This is the
redshift that which would be seen by a static non-inertial
observer being supported against falling by stress in its sup-
porting structure, but the hot population is similarly being
supported against falling by the stress of its kinetic pressure
so it should be essentially identical. Though as mentioned
above, the redshift is not exactly the same because there will

ities as legitimate; if there are any problems with the concept of
relative velocity of two observers at the same time (i.e. in their
centre of velocity frame) they seem to us to pale into insignif-
icance compared to the more fundamental problem of defining
the difference of velocities at different times in the face of the
unknown absolute value of g.
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Is the ‘kinematic’ picture correct?
• B&H (and many others) say that the only way to compare 

velocities of separated objects is via parallel transport

• But that would mean the only way to measure the relative 
velocity is via redshifts.  But then saying ‘redshift is a velocity 
effect’ is circular

• But there are other ways:

• this is how we think 
about measuring 
geodesic deviation (and 
hence the gravitational 
field)

• It not vacuous to say that redshifts in flat space-time are ‘Doppler’ 
because the velocity that gives the redshift really is the same as 
the rate of change of proper separation.

• Same is true for FOs in FRW, and many other situations

• Key question:  is this a general law?  Seems plausible, right?



Application to gravitational redshifts in clusters
• WHH experiment measures the redshift of the general galaxy 

population relative to the BCG

• In equilibrium, their mean separation D is unchanging

• So the 1st order Doppler effect averages to zero.

• What is the residual (2nd order effect)?

• Conventional view: The relative redshift is just the mean  
gravitational potential difference.

• Just as in Pound and Rebka.  But doesn’t it matter that the 
galaxies are in free fall?

• Kinematic picture: D is unchanging, so redshift vanishes?

• Or alternatively, one might imagine that the redshift between a 
pair of galaxies would not be sensitive to the first order 
potential difference δφ ~ D.g (EP: gravity g is “transformed 
away” in free fall) but would see higher order effects (i.e.  tidal 
field to lowest order).

• Several plausible pictures - which is right?



But wait! There’s something fishy here...

• Why is the transverse Doppler effect a red-shift?

• Take a birthday cake; light the candles and put it on a 
turntable and spin it.

• Detect all the photons and measure their frequency

• Compare with non-rotating experiment.

• Shouldn’t we see blue-shift λobs = λem/γ?  As moving candles 
have more energy than candles at rest

• Or what if we have a swarm of moving astrophysical sources 
destroying rest mass and turning it into light and we catch all 
the photons and measure their energy?  

• Does their motion induce a red-shift?  If so, how is can that 
be compatible with energy conservation?

• Note: this is SR, so unlike in cosmology, energy is supposed 
to be conserved



Unresolved sources composed of moving sources 
have a net transverse Doppler blue-shift

• Objects will appear red-shifted (on average at least)

• And a swarm of objects will have an additional red-shift from 
their motions (light-cone effect)

• But photons from an object composed of moving sources 
must, on average, be blue-shifted

• if not, energy conservation would be violated

• The apparent contradiction is resolved once you appreciate 
that a source that radiates isotropically in its rest frame is not 
radiating isotropically in the observer (or lab) frame

• It is a mild relativistic beaming effect:

• slightly more photons emerge in the forward direction

• and these pick up a 1st order Doppler blue-shift

• which leads to a 4th effect:



What went wrong with the argument about little Doppler shifts?

• We break the null path into 
a set of segments with a 
family of observers

• Each can be assumed to be 
turning around as photon 
passes

• But Δv is in rest-frame of 
the pairs

• Generally these don’t add 
up to the rate of change of 
separation of end-points

• but in constant tidal field 
they do 

4 Nick Kaiser

Figure 1. Illustration of the example described in the text. Here
we have a potential with gravity g ∼ r/(r3 + r3

c ) which is like
that for a uniform density sphere at r ≪ rc and is Keplerian at
r ≫ rc. The redshift between an emitter at r = 0 and a distant
receiver at R ≫ rc who happens to be turning around at the
instant of reception is just the static gravitational redshift. But
following Synge & Peebles the wavelength ratio is also equal to
the product of Doppler shifts between pairs of fictitious particles
along the line of sight which, for simplicity, can be taken to be
all on radial orbits (curved lines) that happen also to be turn-
ing around as the photon (dashed line) passes. The velocities are
supposed all to be small compared to c but have been exagger-
ated here for clarity. Now the pairwise velocity differences have
to be calculated in the rest-frame of each pair; i.e. the differences
are between the space-time points connected by the horizontal
lines. If the velocities were differenced along a continuous path
— at a constant time say — the sum of the pairwise velocities
and the relative velocity of the end points has to be equal. But
when a null path is chopped up into a set of space-like intervals
like this the connection between the ‘relative velocity’ obtained
by summing pairwise differences and the true relative velocity is
broken. For this type of potential, the resulting net ‘relative ve-
locity’ is dominated by the transition region r ∼ rc, where there
are only fictitious particles. For R ≫ rc the true rate of change
of the separation of the only two real particles involved is much
smaller than that calculated by summing these fictitious velocity
differences.

which is just the gravitational redshift for this element of the
path, and this δv is also the same as the result of parallel
transporting the 4-velocity of the nth particle along the null
ray and subtracting it from the 4-velocity of the (n + 1)th
particle. Either way, integrating these velocity increments
gives the gravitational redshift, so there is no mathematical
conflict with Synge. But this ‘velocity’ is not related in any
sensible way to the rate of change of the emitter-receiver
proper separation which is much smaller. We feel it is mis-
leading to say that redshifts in the situation described here

— that any non-sophisticated physicist would say are grav-
itational — are kinematic in nature.

If instead we consider a similar pair of particles in a
quadratic potential — where, unlike the Keplerian example
above the tidal field is spatially constant — the redshift is
again just the gravitational redshift, but in this case this is
not inconsistent with the the kinematic interpretation since
at the time of emission the receiver was indeed closer to the
source such that the fractional change in λ is indeed the
same as the fractional change in separation.

Returning to the homogeneous model, the simple anal-
ysis provided here helps to clarify the consistency of the pic-
ture of redshift as the combination of a Doppler effect and a
gravitational redshift. In the development above we consider
the Doppler term to be that due to the initial velocity at the
time of emission and we need to add an appropriate change
from the tidal field. Had we taken the Doppler term to be
the final relative velocity then we would have had to apply a
gravitational correction with the opposite sign. Had we used
the average velocity over the time of flight there would be
no gravitational correction. See Chodorowski (2011) for a
similar discussion couched in the language of parallel trans-
port.

We gratefully acknowledge stimulating discussions with
Shaun Cole and with numerous fellows of the Cifar Cosmol-
ogy and Gravitation programme on this subject.
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In Sec. IV we widen our focus to consider frequency shifts in arbitrary curved spacetimes. In any curved spacetime
the observed frequency shift in a photon can be interpreted as either a kinematic effect (a Doppler shift) or as a
gravitational shift. The two interpretations arise from different choices of coordinates, or equivalently from imagining
different families of observers along the photon’s path. We will describe this construction explicitly, and show that
the comoving observers who are usually used to describe phenomena in the expanding universe are the ones that
correspond to the Doppler shift interpretation.

II. REDSHIFTS OF NEARBY GALAXIES ARE DOPPLER SHIFTS

We begin by returning to the parable of the speeding ticket, mentioned in Sec. I.

“A driver is pulled over for speeding. The police officer says to the driver, ‘According to the Doppler shift
of the radar signal I bounced off your car, you were traveling faster than the speed limit.’

“The driver replies, ‘In certain coordinate systems, the distance between us remained constant during the
time the radar signal was propagating. In such a coordinate system, our relative velocity is zero, and the
observed wavelength shift was not a Doppler shift. So you can’t give me a ticket.’ ”

If you believe that the driver has a legitimate argument, then you have our permission to believe that cosmological
redshifts are not really Doppler shifts. If, on the other hand, you think that the officer is right, and the redshift
can legitimately be interpreted as a Doppler shift, then you should believe the same thing about redshifts of nearby
galaxies in the expanding universe.

Why is the police officer right and the driver wrong? Assuming the officer majored in physics, he might explain the
situation like this: “Spacetime in my neighborhood is very close to flat. That means that I can lay down space and
time coordinates in my neighborhood such that, to an excellent approximation, the rules of special relativity hold.
Using those coordinates, I can interpret the observed redshift as a Doppler shift (because there is no gravitational
redshift in flat spacetime) and calculate your coordinate velocity relative to me. The errors in this method are of
the same order as the departures from flatness in the spacetime in a neighborhood containing both me and you. As
long as I’m willing to put up with that very small level of inaccuracy, I can interpret that coordinate velocity as your
actual velocity relative to me.”

The principle underlying the officer’s reasoning is uncontroversial. It is no different from the principle that lets
football referees ignore the curvature of Earth and use a flat coordinate grid in describing a football field.

We now return to the consideration of redshifts in the expanding universe. As noted in Sec. I, it is instructive in
this context (as in many others) to start with the zero-density expanding universe (the Milne model).11 The Milne
universe consists of a set of galaxies expanding outward from an initial Big Bang, with the galaxies assumed to have
negligible mass, so that the geometry is that of gravity-free Minkowski spacetime. This spacetime can be described
either in the usual comoving coordinates of cosmology or in Minkowskian coordinates. Because there is no spacetime
curvature and no gravity in this universe, it is clear that the observed redshifts should be interpreted as Doppler
shifts. In comoving coordinates, however, the redshifts are easily seen to be the usual cosmological redshift. In this
case there is no distinction between the cosmological redshift and the Doppler shift.

In our actual universe spacetime is not exactly flat, but we can approximate it as flat in a small neighborhood. It
might be tempting to think that “approximating away” the curvature of spacetime is the same as approximating away
the expansion altogether. (It seems to us that people who believe that cosmological redshifts cannot be viewed as
Doppler shifts, even arbitrarily nearby, often believe something like this.) However, this belief is incorrect. When we
approximate a small neighborhood of an expanding spacetime as flat, we make errors of order (r/Rc)2 in the metric,
where r is the size of the neighborhood and Rc is the curvature scale (generally the Hubble length). The redshifts
of galaxies in that neighborhood are of order (r/Rc), so they are not approximated away in this limit. (The Milne
model corresponds to the limit Rc → ∞, in which case no approximation is made.)

In comoving coordinates the spacetime line element for the Robertson-Walker expanding universe is

ds2 = −c2dt2 + [a(t)]2
(

dr2 + [S(r)]2[dθ2 + sin2 θ dφ2]
)

. (1)

Here S(r) = r for a flat universe. For a closed universe with positive curvature K, S(r) = K−1 sin(Kr), and for an
open universe with negative curvature −K, S(r) = K−1 sinh(Kr). For realistic models K−1 is at least comparable
to the Hubble length, and thus S(r) ≈ r for nearby points in all cases.

Assume that an observer at the origin at the present time t0 measures the redshift of a galaxy at some comoving
distance r. Assume that the galaxy is nearby so that r/Rc ≪ 1, where Rc is the curvature length scale. Over such a
distance scale spacetime can be well approximated as flat. Let the observer lay down coordinates that approximate



The gravitational redshift according to wikipedia



The nature of astronomical redshifts - prologue
• For photons exchanged between fundamental observers in 

FRW λ increases with the scale-factor a(t)

• Equivalently, wavelength changes in proportion to the 
emitter-receiver proper separation D so Δln(λ/D) = 0

• Just as for a pair of observers in flat space-time

• Widely accepted, but there has been much debate as to why?

• There has been a shift away from describing redshifts as being 
caused by the ‘expansion of space’ and towards a `kinematic’ 
description in which redshifts --- and perhaps all redshifts --- 
are thought of as essentially Doppler-like, or ‘kinematic’ in 
nature.

• Here I will review the old picture and the arguments against it, 
and the arguments for the kinematic picture

• but both lead to wrong expectations for cluster grav-Z

• Calculation: the intrinsically gravitational component of Z
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A common belief about big-bang cosmology is that the cosmological redshift cannot be properly
viewed as a Doppler shift (that is, as evidence for a recession velocity), but must be viewed in terms
of the stretching of space. We argue that, contrary to this view, the most natural interpretation of
the redshift is as a Doppler shift, or rather as the accumulation of many infinitesimal Doppler shifts.
The stretching-of-space interpretation obscures a central idea of relativity, namely that it is always
valid to choose a coordinate system that is locally Minkowskian. We show that an observed frequency
shift in any spacetime can be interpreted either as a kinematic (Doppler) shift or a gravitational
shift by imagining a suitable family of observers along the photon’s path. In the context of the
expanding universe the kinematic interpretation corresponds to a family of comoving observers and
hence is more natural.

I. INTRODUCTION

Many descriptions of big-bang cosmology declare that the observed redshift of distant galaxies is not a Doppler
shift but is due to the “stretching of space.” The purpose of this paper is to examine the meaning of such statements
and to assess their validity. We wish to make clear at the outset that we are not suggesting any doubt about
either the observations or the general-relativistic equations that successfully explain them. Rather, our focus is on the
interpretation: given that a photon does not arrive at the observer conveniently labeled “Doppler shift,” “gravitational
shift,” or “stretching of space,” when can or should we apply these labels?

Arguably an enlightened cosmologist never asks this question. In the curved spacetime of general relativity, there is
no unique way to compare vectors at widely separated spacetime points, and hence the notion of the relative velocity
of a distant galaxy is almost meaningless. Indeed, the inability to compare vectors at different points is the definition
of a curved spacetime.1,2,3,4 In practice, however, the enlightened view is far from universal. The view presented
by many cosmologists and astrophysicists, particularly when talking to nonspecialists, is that distant galaxies are
“really” at rest, and that the observed redshift is a consequence of some sort of “stretching of space,” which is distinct
from the usual kinematic Doppler shift. In these descriptions, statements that are artifacts of a particular coordinate
system are presented as if they were statements about the universe, resulting in misunderstandings about the nature
of spacetime in relativity.

In this paper we will show that the redshifts of distant objects in the expanding universe may be viewed as kinematic
shifts due to relative velocities, and we will argue that if we are forced to interpret the redshift, this interpretation is
more natural than any other.

We begin with examples of the description of the cosmological redshift in the first three introductory astronomy
textbooks chosen at random from the bookshelf of one of the authors.

• The cosmological redshift “is not the same as a Doppler shift. Doppler shifts are caused by an object’s motion
through space, whereas a cosmological redshift is caused by the expansion of space.”5 (Emphasis in original.)

• “A more accurate view [than the Doppler effect] of the redshifts of galaxies is that the waves are stretched by
the stretching of space they travel through . . . If space is stretching during all the time the light is traveling,
the light waves will be stretched as well.”6

• “Astronomers often express redshifts as if they were radial velocities, but the redshifts of the galaxies are not
Doppler shifts . . . Einstein’s relativistic Doppler formula applies to motion through space, so it does not apply
to the recession of the galaxies.”7

More advanced textbooks often avoid this language. For instance, the books by Peacock8 and Linder9 give partic-
ularly careful and clear descriptions of the nature of the cosmological redshift. However, statements similar to those
we have cited can be found even in some advanced textbooks. For example, a leading advanced undergraduate level
text states that Doppler shifts “are produced by peculiar and not by recession velocities.”10 In this paper we argue,
as others have before us,11,12,13,14 that statements such as these are misleading and foster misunderstandings about
the nature of space and time.
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from the usual kinematic Doppler shift. In these descriptions, statements that are artifacts of a particular coordinate
system are presented as if they were statements about the universe, resulting in misunderstandings about the nature
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In this paper we will show that the redshifts of distant objects in the expanding universe may be viewed as kinematic
shifts due to relative velocities, and we will argue that if we are forced to interpret the redshift, this interpretation is
more natural than any other.

We begin with examples of the description of the cosmological redshift in the first three introductory astronomy
textbooks chosen at random from the bookshelf of one of the authors.

• The cosmological redshift “is not the same as a Doppler shift. Doppler shifts are caused by an object’s motion
through space, whereas a cosmological redshift is caused by the expansion of space.”5 (Emphasis in original.)

• “A more accurate view [than the Doppler effect] of the redshifts of galaxies is that the waves are stretched by
the stretching of space they travel through . . . If space is stretching during all the time the light is traveling,
the light waves will be stretched as well.”6

• “Astronomers often express redshifts as if they were radial velocities, but the redshifts of the galaxies are not
Doppler shifts . . . Einstein’s relativistic Doppler formula applies to motion through space, so it does not apply
to the recession of the galaxies.”7

More advanced textbooks often avoid this language. For instance, the books by Peacock8 and Linder9 give partic-
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My thoughts on P&R, B&H, Synge, Rindler
• B&H argument that gravitational and Doppler redshifts are in 

some way equivalent is misleading.

• Accelerated observers know that they are accelerated

• So when they allow for this they agree that the redshift 
measured by the cop was a Doppler shift cause by δv

• An acceleration does not create gravity (Rαβγδ = 0)

• Pound and Rebka did not measure a gravitational redshift

• they measured a redshift caused by the non-gravitational 
acceleration that their apparatus experienced

• Synge is right: gravity = curvature (or tidal field)

• Pound & Rebka too insensitivite to measure tidal effects

• But Synge is wrong to say that redshift is just Doppler

• parallel transport of photon involved the connection

• Most redshifts are mostly Doppler - but there is an intrinsically 
gravitational component - it is the gradient of the tide



So why does the ‘kinematic’ law give the wrong answer?

• Recap: kinematic law Δlog(λ/D) = 0 holds in a wide range of 
circumstances

• any observers in flat space-time, FOs in FRW, freely falling 
observers co-moving with Pound & Rebka apparatus

• Bunn & Hogg’s argument ⇒ universal

• But consider emitter at rest in centre of a cluster and distant 
receiver turning around at large radius 

• calculation ⇒ Δλ/λ ≫ ΔD/D

Cluster



equivalence principle



Principle of Equivalence (from dummies.com)

http://dummies.com




What is the equivalence principle?

• Synge: 

• Rindler: 



Redshifts in homogeneous FRW models

• λ scales with proper separation

• analogous to EM waves in an expanding cavity

• stretching of λ is caused by the expansion of space

• that this should be so is obvious

• expansion of space causes damping in Maxwell's equations

• cosmological redshifts do not obey special relativity

• z is a combination of SR Doppler shift + gravitational z 

• at low-z at least (Bondi 1947)

• overall frequency shift is the product of little Doppler shifts

• Peebles



Redshifts in general

• all redshifts are Doppler shifts 

• Riemann tensor Rαβψδ does not appear in the formula

• acceleration and gravity are the same thing

• principle of equivalence

• acceleration creates gravity

• Pound and Rebka measured a gravitational redshift

• redshifts can be considered as either gravitational or Doppler

• simply a difference of coordinate systems

• all redshifts can (and should) be considered to be Doppler

• all redshifts are kinematic in nature

• the only way to measure velocity is through redshift


